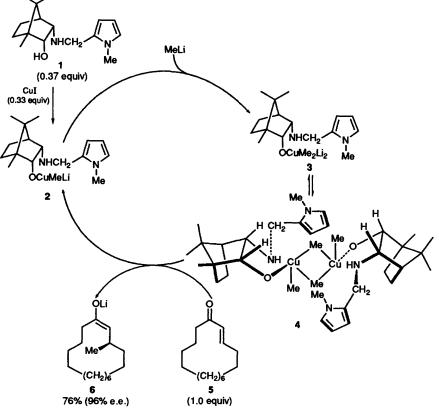
Catalytic Enantioselective Conjugate Addition of Chiral Alkoxydimethylcuprate to (*E*)-Cyclopentadec-2-enone

Kazuhiko Tanaka,*,ª Junichi Matsui,ª Hitomi Suzukiª and Akio Watanabe^b


^a Department of Chemistry, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606, Japan ^b Bioscience Research Laboratories, Nippon Mining Co., Ltd., 3-17-35 Niizo-Minami, Toda, Saitama 335, Japan

Asymmetric 1,4-addition of methyllithium to (*E*)-cyclopentadec-2-enone was promoted by the chiral cuprate catalyst prepared from (1R,2R,3S,4S)-3-[(1-methylpyrrol-2-yl)methylamino]-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-ol and copper(i) iodide to give (*R*)-(-)-muscone in 76% chemical yield and 96% enantiomeric excess.

In enantioselective conjugate additions, a topic of considerable interest in recent years,^{1,2} stoichiometric amounts of chiral auxiliaries and copper(I) salts are necessary for the preparation of optically active lithium dialkylcuprates. Catalytic enantioselective 1,4-conjugate addition is, therefore, a challenging goal in asymmetric syntheses. The enantioselective conjugate additions of organolithium reagents catalysed by organocopper complexes is very difficult since lithium reagents are highly nucleophilic³ towards α,β -enones, affording 1,2-adducts exclusively. By using less nucleophilic Gignard reagents such as butyl- and phenyl-magnesium chloride, Lippard recently achieved the first enantioselective conjugate addition catalysed by a chiral copper complex prepared from $1-[(R)-1-\alpha-methy]$ benzylamino]-7-[(R)- α -methylbenzylamino]cyclohepta-1,3,5triene and CuBr-MeS₂.⁴ Similar catalytic 1,4-conjugate additions have been reported in the reaction of cyclohex-2enone with isopropylmagnesium bromide in the presence of

chiral organozinc complexes prepared from (1R,2S)-3,6,6trimethyl-1-phenyl-3,6-diazahexanol and zinc(II) chloride at -90 °C,⁵ and in the reaction of chalcone with less electrophilic metals ⁶ such as diethylzinc and dibutylzinc in the presence of chiral organonickel complexes prepared from (1S,2R)-N,Ndibutylnorephedrine, 2,2'-bipyridyl and Ni(acac)₂.⁷

We now report the enantioselective conjugate addition of methyllithium to (E)-cyclopentadec-2-enone 5 catalysed by a chiral copper complex derived from (1R,2R,3S,4S)-3-[(1methylpyrrol-2-yl)methylamino]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (MPTAH-1), which has recently been developed in this laboratory.² The catalyst was prepared at -78 °C by adding methyllithium to the toluene solution of alkoxymethylcuprate 2 prepared from 1 (0.37 equiv.) and CuI (0.33 equiv.) and the mixture was stirred at this temperature for 1 h. It was then allowed to warm to -20 °C over 1 h prior to the addition of (E)-cyclopentadec-2-enone 5. This 'ageing' is crucial to the

Scheme 1

 Table 1
 Conjugate addition of methyllithium to (E)-cyclopentadec-2-enone 5 using 3 as a catalyst

Entry	MPATH-1					
	(equiv.)	concentration (mol dm ⁻³)	CuI (equiv.)	Additive (equiv.)	Yield of (<i>R</i>)-muscone ^a (%)	E.e. (%)
1	1.10	0.061	1.10	THF (10.0 equiv.)	80	91
2	0.50	0.056	0.50 ^b	None	83	42°
3	0.50	0.056	0.50*	None	78	73
4	0.55	0.061	0.50 *	None	79	76
5	0.55	0.061	0.50 *	Me ₃ SiCl (5.0 equiv.)	70	56
6	0.33	0.056	0.33 ^d	None	76	54
7	0.37	0.122	0.33 ^d	None	83	68
8	0.28	0.061	0.25°	None	70	41
9	0.22	0.061	0.20 ^f	None	68	47

^{*a*} Isolated yields after column chromatography and vacuum distillation. ^{*b*} MeLi (0.50 equiv.) and **5** (0.50 equiv.) were added (\times 2). ^{*c*} Ageing of the catalyst was omitted. ^{*d*} MeLi (0.33 equiv.) and **5** (0.33 equiv.) were added (\times 3). ^{*e*} MeLi (0.25 equiv.) and **5** (0.25 equiv.) were added (\times 4). ^{*f*} MeLi (0.20 equiv.) and **5** (0.20 equiv.) were added (\times 5).

high enantioselectivity in this conjugate addition reaction. In order to supress 1,2-adduct formation in the reaction of methyllithium with the enone 5, the reagents were added alternately to the toluene solution of the chiral alkoxymethylcuprate 2 (see Table 1 and experimental procedure). This methodology provides not only the highest enantioselectivity (96% e.e.) so far in the introduction of a methyl group into an enone,⁴ but also provides useful information on the mechanism of the organocopper conjugate addition. Thus, the high chemical yield (76%) indicate that the conjugate adduct exists in solution as a lithium enolate $6^9 - 78$ °C, not as a copper(1) enolate, and methyllithium reacts exclusively with the copper complex 2 to produce the cuprate catalyst 3. A reaction pathway which appears to be consistent with the present result and the chiral amplification reported in the previous communication^{2d} is illustrated in Scheme 1. The use of methylmagnesium chloride, however, was ineffective in this reaction, a 1,2-adduct being obtained in 55% yield. When copper(1) iodide was replaced by zinc(II) chloride, no conjugate addition took place.

Experimental

The following experimental procedure was used for the preparation of (R)-(-)-muscone from MPATH-1 (0.5 equiv.) and CuI (0.5 equiv.). To a solution of (1R, 2R, 3S, 4S)-3-[(1methylpyrrol-2-yl)methylamino]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (MPATH-1) (0.525 g, 2.00 mmol) in dry toluene (36.0 cm³) at 0 °C under argon was added methyllithium [1.00 mol dm⁻³ ether solution containing lithium bromide (2.00 mmol)]. The solution was stirred at 0 °C for 1 h and then cooled to -20 °C. Cuprous iodide (purified by a literature procedure; ¹¹ 0.381 g, 2.00 mmol) was added and the resulting suspension was allowed to warm to -5 °C over 2.5 h. The dark grey suspension was cooled to -78 °C and methyllithium (4.00 mmol) was added dropwise. The suspension was then stirred at -78 °C for 30 min, after which it was warmed to -5 °C during 2 h, and then recooled to -78 °C. A solution of 5 (0.445 g, 2.00 mmol) in dry toluene (5.0 cm³) was added dropwise at -78 °C and the mixture was stirred for 3 h at this temperature. Further methyllithium (2.00 mmol) was then added at -78 °C and the resulting mixture was stirred for 1 h; it was then allowed to

warm to -20 °C over 1 h, and recooled to -78 °C. A solution of 5 (0.445 g, 2.00 mmol) in dry toluene (5.0 cm³) was added and the reaction mixture was stirred overnight at 78 °C. It was then quenched with a 1:1 mixture of saturated aqueous ammonium chloride-30% aqueous ammonium hydroxide (10 cm³) and extracted with ether. The organic extract was washed with brine, dried (MgSO₄), and concentrated. Chromatography on silica gel (hexane-ethyl acetate 45:1) afforded (*R*)-muscone (0.84 g, 91%) as a colourless oil as a single peak by GLPC; this was distilled to give the pure muscone (0.725 g, 78%) (73% e.e), $[\alpha]_{D}^{23}$ -8.57 (*c* 2.16, MeOH) (Found: C, 80.45; H, 12.8. Calc. for C₁₆H₃₀O: C, 80.60; H, 12.68%).

References

- (a) R. K. Dieter and M. Tokles, J. Am. Chem. Soc., 1987, 109, 2040 and references cited therein; (b) E. J. Corey, R. Naef and F. J. Hannon, J. Am. Chem. Soc., 1986, 108, 7114; (c) B. E. Rossiter and M. Eguchi, Tetrahedron Lett., 1990, 31, 965; (d) S. H. Bertz, G. Dabbagh and G. Sundararajan, J. Org. Chem., 1986, 51, 4953 and references cited therein; (e) A. Alexakis, S. Mutti and J. F. Normant, J. Am. Chem. Soc., 1991, 113, 6332.
- 2 (a) K. Tanaka, H. Ushio and H. Suzuki, J. Chem. Soc., Chem. Commun., 1990, 795; (b) K. Tanaka, H. Ushio, Y. Kawabata and H. Suzuki, J. Chem. Soc., Perkin Trans. 1, 1991, 1445; (v) K. Tanaka and H. Suzuki, J. Chem. Soc., Chem. Commun., 1991, 101; (d) K. Tanaka, J. Matsui, H. Suzuki and A. Watanabe, J. Chem. Soc., Chem. Commun., 1991, 1632.
- 3 H. O. House, W. L. Respress and G. M. Whitesides, J. Org. Chem., 1966, 31, 3128.
- 4 (a) G. M. Villacorta, Ch. P. Rao and S. J. Lippard, J. Am. Chem. Soc., 1988, 110, 3175; (b) K.-H. Ahn, R. B. Klassen and S. J. Lippard, Organometallics, 1990, 9, 3178.
- 5 (a) W. Langer and D. Seebach, *Helv. Chim. Acta*, 1979, **62**, 1710; (b) J. F. G. A. Jansen and B. L. Feringa, *J. Org. Chem.*, 1990, **55**, 4168.
- 6 J. C. Stowell, Carbanions in Organic Synthesis, John Wiley and Sons, New York, 1979, p. 47.
- 7 K. Soai, T. Hayasaka and S. Ugajin, J. Chem. Soc., Chem. Commun., 1989, 516.
- 8 H. O. House and J. M. Wilkins, J. Org. Chem., 1978, 43, 2443.

Paper 2/07113A Received 2nd March 1992 Accepted 25th March 1992